MHD flow in an insulating rectangular duct under a non-uniform magnetic field
نویسندگان
چکیده
Followed by a review of previous studies of magnetohydrodynamic (MHD) duct flows in a non-uniform magnetic field at the entry into a magnet (fringing magnetic field), the associated MHD problem is revisited for a particular case of a nonconducting rectangular duct of a small aspect ratio ε = b/a (here, b is the duct half-width in the magnetic field direction, and a is the half-height). The suggested model includes a realistic three-component divand curl-free fringing magnetic field as well as inertia terms and takes into account the mechanism of electric current exchange between the core of the flow and the Hartmann layers. The original three-dimensional flow equations are reduced to a quasi-two-dimensional (Q2D) form for three basic scalar quantities: the vorticity, the streamfunction and the electric potential. This Q2 D formulation implies that the velocity field in the core region between the two Hartmann layers does not change in the magnetic field direction and thus is twodimensional, while the induced electric current forms both cross-sectional and axial circuits and is essentially three-dimensional. A new parameter R = εRe/Ha has been identified to characterize the role of inertia in duct flows with insulating walls (Re and Ha stand for the Reynolds and Hartmann numbers). Computations and analytical studies are performed for inertialess (R ≪ 1) and inertial (R ≫ 1) flows at ε = 0.2 for Re up to 300,000 resulting in new scaling laws for typical lengths, velocities, electric current densities and pressure drops, which provide a new theoretical basis for potential applications. PACS Codes: 47.65.-d, 47, 47.11.-j
منابع مشابه
Effect of Variable Thermal Conductivity and the Inclined Magnetic Field on MHD Plane Poiseuille Flow in a Porous Channel with Non-Uniform Plate Temperature
The aim of this paper is to investigate the effect of the variable thermal conductivity and the inclined uniform magnetic field on the plane Poiseuille flow of viscous incompressible electrically conducting fluid between two porous plates Joule heating in the presence of a constant pressure gradient through non-uniform plate temperature. It is assumed that the fluid injection occurs at lower pl...
متن کاملNumerical and Experimental Studies of Mhd Flow in a Rectangular Duct with a Non-conducting Flow Insert
We consider magnetohydrodynamic (MHD) flows in a conducting rectangular duct with a non-conducting flow channel insert (FCI) in a constant transverse magnetic field. The computations based on the fully developed flow model are performed for three FCI modifications: (i) without pressure equalization openings, (ii) with the pressure equalization slot (PES) in the FCI wall parallel and (iii) perpe...
متن کاملHeat transfer in MHD square duct flow of nanofluid with discrete heat sources
The effect of thermal and solutal buoyancy induced by a discrete source of heat and mass transfer in a square duct under the influence of magnetic field, especially at the turbulent regime for the first time is reported. Al2O3/water nanofluid is used with constant heat flux from three discrete heat sources. In the present study, the effects of Reynolds number (100 to 3000), particle volume frac...
متن کاملNUMERICAL SIMULATION OF EFFECTS OF NON-IONIZED MASS INJECTION ON THE MHD FLOW IN A CIRCULAR CHANNEL
Control of a fluid velocity profile by injection and suction of non-ionized flow in presence of a uniform steady magnetic field has important technical applications. In this paper, the unsteady incompressible and viscous conducting fluid flow has been investigated in a circular channel. The channel wall has been assumed to be non-conducting and porous. It has been subjected to a uniform steady ...
متن کاملMHD FREE CONVECTIVE FLUCTUATING FLOW THROUGH A POROUS EFFECT WITH VARIABLE PERMEABILITY PARAMETER
In the present paper, we have studied MHD free convective two dimensional unsteady viscous incompressible flows through a porous effect bounded by an infinite vertical porous plate with constant suction. The permeability of the porous medium fluctuates in time about a constant mean, and the viscosity of fluid is assumed to vary as a linear function of temperature. The flow is permitted under th...
متن کامل